The Discrete Moment Method for the numerical integration of piecewise higher order convex functions

نویسندگان

  • András Prékopa
  • Mariya Naumova
چکیده

A new numerical integration method, termed Discrete Moment Method (DMM), is proposed for univariate functions that are piecewise higher order convex. This means that the interval where the function is defined can be subdivided into non-overlapping subintervals such that in each interval all divided differences of given orders, do not change the sign. The new method uses piecewise polynomial lower and upper bounds on the function, created in connection with suitable dual feasible bases in the univariate discrete moment problem and the integral of the function is approximated by tight lower and upper bounds on them. Numerical illustrations are presented for the cases of the normal, exponential, gamma and Weibull probability density functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of the Discrete Moment Problem for Numerical Integration and Solution of a Special Type of Moment Problems

OF THE DISSERTATION Application of the discrete moment problem for numerical integration and solution of a special type of moment problems by Mariya Naumova Dissertation Director: András Prékopa We present a brief survey of some of the basic results related to the classical continuous moment problems (CMP) and the recently developed discrete moment problems (DMP), clarifying their relationship....

متن کامل

Discrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients

This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiven...

متن کامل

SIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD

In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...

متن کامل

CVaR Reduced Fuzzy Variables and Their Second Order Moments

Based on credibilistic value-at-risk (CVaR) of regularfuzzy variable, we introduce a new CVaR reduction method fortype-2 fuzzy variables. The reduced fuzzy variables arecharacterized by parametric possibility distributions. We establishsome useful analytical expressions for mean values and secondorder moments of common reduced fuzzy variables. The convex properties of second order moments with ...

متن کامل

An Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients

Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 202  شماره 

صفحات  -

تاریخ انتشار 2016